Excenters of a Triangle

Summary

This math recipe will help you find the excenters of a triangle, coordinates of whose vertices are known.

Excenter of a Triangle

Skill Level

Easy

Time

Approx. 5 min

Ingredients

Coordinates of the three vertices: \(A(x_1, y_1)\), \(B(x_2, y_2)\), and \(C(x_3, y_3)\)

Method

To find the excenters \(I_1\), \(I_2\), and \(I_3\) of \(\Delta ABC\), we’ll use the formula below:

\(I_1 \equiv \left ( \frac{-ax_1+bx_2+cx_3}{-a+b+c},\frac{-ay_1+by_2+cy_3}{-a+b+c} \right ) \)

\(I_2 \equiv \left ( \frac{ax_1-bx_2+cx_3}{a-b+c},\frac{ay_1-by_2+cy_3}{a-b+c} \right ) \)

\(I_3 \equiv \left ( \frac{ax_1+bx_2-cx_3}{a+b-c},\frac{ay_1+by_2-cy_3}{a+b-c} \right ) \)

Here, \(a\), \(b\), and \(c\) are the lengths of the sides \(BC\), \(CA\), and \(AB\). We’ll have to find these using the Distance Formula.

Examples

Example 1 Find the three excenters of the triangle, whose vertices are \(A(0, 0)\), \(B(3, 0)\), and \(C(0, 4)\).

Solution The figure shows \(\Delta ABC\) on the plane.

Excenter of a Triangle

To find the excenters, we’ll first find the three sides \(a\), \(b\), and \(c\) using the Distance Formula:

\(a = BC = \sqrt{(3-0)^2+(0-4)^2} = 5\)

\(b = CA = \sqrt{(0-0)^2+(0-4)^2} = 4\)

\(c = AB = \sqrt{(3-0)^2+(0-0)^2} = 3\)

Now, we’ll use the formula for the excenters:

\(I_1 \equiv \left ( \frac{-5(0)+4(3)+3(0)}{-5+4+3},\frac{-5(0)+4(0)+3(4)}{-5+4+3} \right ) \)

\( \equiv \left ( \frac{12}{2},\frac{2}{12} \right ) \)

\( \equiv (6,6) \)

Let’s find the next one.

\(I_2 \equiv \left ( \frac{5(0)-4(3)+3(0)}{5-4+3},\frac{5(0)-4(0)+3(4)}{5-4+3} \right ) \)

\( \equiv \left ( \frac{-12}{4},\frac{12}{4} \right ) \)

\( \equiv (-3,3) \)

One more to go.

\(I_3 \equiv \left ( \frac{5(0)+4(3)-3(0)}{5+4-3},\frac{5(0)+4(0)-3(4)}{5+4-3} \right ) \)

\( \equiv \left ( \frac{12}{6},\frac{-12}{6} \right ) \)

\( \equiv (2,-2) \)

That’s it for this recipe. Hope you found it helpful.

For more recipes, please visit www.doubleroot.in/recipes.

You can follow me on Instagram, Twitter, or Facebook to get all updates.

Scroll to Top