Convert Between Polar and Cartesian Coordinates

Summary

This math recipe will help you convert Cartesian coordinates to polar coordinates and vice versa.

Polar Cartesian Coordinates

Skill Level

Easy

Time

Approx. 1 min

Ingredients

Coordinates of the point: \((r, θ)\) or \((x­, y)\)

Method

To convert the coordinates from polar \((r, θ)\) to Cartesian \((x­, y)\), we’ll use the following formula:

\(x = rcosθ\), \(y = rsinθ\)

To convert the coordinates from Cartesian \((x, y)\) to polar \((r, θ)\), we’ll use the following formula:

\(r =\sqrt{x^2+y^2}\)

\(cosθ = \frac{x}{r}\) and \(sinθ = \frac{y}{r}\)

The equations in \(θ\) are to be simultaneously solved to get a unique value of \(θ\).

Examples

Example 1 Write the Cartesian coordinates corresponding to \((4, \frac{π}{6})\).

Solution The figure shows the point \((4, \frac{π}{6})\) on the plane.

Polar Coordinates

To convert its coordinates to Cartesian, we’ll use the first formula above.

\(x = 4\cos\frac{π}{6}\), \(y = 4\sin\frac{π}{6}\)

\(\Rightarrow x = 4 \times \frac{\sqrt{3}}{2}\), \(y = 4 \times \frac{1}{2}\)

\(\Rightarrow x = 2\sqrt{3}\), \(y = 2\)

Therefore, the Cartesian coordinates corresponding to \((4, \frac{π}{6})\) are \((2\sqrt{3}, 2)\).

Example 2 Write the polar coordinates corresponding to \((-3,\sqrt{3})\).

Solution The figure shows the point \((-3,\sqrt{3})\) on the plane.

Cartesian Coordinates

To convert its coordinates to polar, we’ll use the second formula above formula.

\(r = \sqrt{(-3)^2+(\sqrt{3})^2} = 2\sqrt{3}\)

\(cosθ = \frac{–3}{2\sqrt{3}}  = \frac{–\sqrt{3}}{2}\)

\(sinθ = \frac{\sqrt{3}}{2\sqrt{3}}  = \frac{1}{2}\)

Solving the last two equations simultaneously for \(θ\), we’ll get \(θ = \frac{5π}{6}\).

Therefore, the polar coordinates corresponding to \((-3, \sqrt{3})\) are \((2\sqrt{3}, \frac{5π}{6})\).

Polar Coordinates

Example 3 Write the polar coordinates corresponding to \((3, –3)\).

Solution The figure shows the point \((3, –3)\) on the plane.

Cartesian Coordinates

To convert its coordinates to polar, we’ll use the second formula above.

\(r = \sqrt{(3)^2+(-3)^2} = 3\sqrt{2}\)

\(cosθ = \frac{3}{3\sqrt{2}}  = \frac{1}{\sqrt{2}}\)

\(sinθ = \frac{-3}{3\sqrt{2}}  = \frac{-1}{\sqrt{2}}\)

Solving the last two equations simultaneously for \(θ\), we’ll get \(θ = -\frac{π}{4}\).

Therefore, the polar coordinates corresponding to \((3, –3)\) are \((3\sqrt{2}, -\frac{π}{4})\).

Polar Coordinates

That’s it for this recipe. Hope you found it helpful.

For more recipes, please visit www.doubleroot.in/recipes.

You can follow me on Instagram, Twitter, or Facebook to get all updates.

Scroll to Top